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By Simon Ostrach

SUMMARY

The laminar compressible boundary layer and heat transfer over an
isothermal semi-infinite flat plate moving with a time-dependent veloc-
1ty has been analyzed. First-order deviations from the quasi-steady ve-
locity and temperature profiles and boundery-layer characteristics have
been computed. For a plate oscillating about a steady velocity, it is
shovn that the maxima of skin-friction coefficient and local hesgt-
transfer rate are out of phase with the plate veloclity; the skin fric-
tion leads by angles not exceeding 45° for permissible values of the
frequency parameter, whereas the heat transfer is almost in phase with
the plate velocity for very small Mach mumbers but depends significantly
on the Mach number, plate to stream temperature ratlo, and frequency for
higher-speed flovs.

INTRODUCTION

Until recently, studiés of unsteady laminar boundary layer were
limited either to the early stages of the motion (i.e., to the tran-
sient state) or to oscillatory motions without a mean flow. The fluid,
furthermore, was assumed to be lncampressible. More detailed investi-
gations were not made, because it was felt that the boundary-layer
growth occurred in so short a period of time that, for engineering pur-
poses, the flow could be assumed steady. However, in many present-day
applications, consideration must be given to the unsteady effects for
long periods of time and for high-speed flows in which campressibility
is important. ¥or exsmple, the skin friction and heat transfer of the
usual rocket missile must be regarded as unsteady for its entire flight
because the flight speed varies continuocusly over the entire trajectory.
Other cases of importance in this regard include blades rotating in non-
uniform air streams, unsteady nozzle flow, and oscillating wings.
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Accordingly, the unsteady laminar compressible boundary layer over
an insulated surface was anslyzed in reference 1. The development
therein is for continuous time-dependent velocities of the body, and
universal functions are presented fraom which the deviations of the ve-
locity and temperature profiles fram the quasi-steady statel can be
determined.

To determine the effects of free-stream fluctuations on both skin
friction and heat transfer, the case of two-dimensional incampressible
flow about a fixed cylindrical body is treated in reference 2 by an in-
tegral method.

3743

In the present paper, prepared at the NACA Lewls laboratory, con-
sideration is given to the laminar compressible boundary layer and heat
transfer over a semi-infinite flat plate maintained at a uniform (both
temporally and spatia.lly) temperature and moving with a continuous but
otherwvise arbitrary time-dependent velocity. The solutions are obtained

as a series about the quasi-steady state. The analysis presented here-
in, therefore, extends the results of reference 1l to include the effects

of heat transfer. The present study also represents a more exact treat-
ment including compressibility effects of a similard problem treated in
reference 2. .

ANATYSIS
Basic Equations

Consideration is gilven herein to the laminar flow and heat transfer
about an isothermal semi-infinite flat plate in rectilinear flight
through still air; the flight speed is to be time-dependent. For this
Tlow it is presumed that the Prandtl boundary-layer assumptions are
velid, and, in particular, the pressure is constant throughout the
fluid. If it is further assumed that the Prandtl number and specific

yhen the boundary layer at any instant is that apprbpria.te to
steady flow at the instantaneous value of the stream velocity, the

flow is said to be quasi steady.

2The class of bodies considered in reference 2 is more general
than that considered herein.
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heat are constant, the equations governing the flow and heat transfer

in & compressible viscous fluid are

d D

B—E+S}={(pﬁ)+%(ﬁ>—)=0

where the symbols are defined in appendix A.

(1)

These equations are written for a rectangular coordinate system

which is stationary in the fiuid.

The plate, therefore, moves with a

velocity U(E) in the negative E-direction, and § is measured normal

to the plate (see fig. 1(a)). The origin of
be the leading-edge location at t = O.

coordinates is teken to

These equations may be written in another coordinate system fixed

wlth reference to the plate, with the origin

at the leading edge (see

fig. 1(b)). The appropriate transformations for this change of coordi-
nates are
uzu+U; vVv=EV
E'
X=X+ U &E; ¥y = ;, t= t
0
Equation (1) then beccmes
d . d _ )
3 T (pu) * 5y (pv) = 0
du Ju du au , o du
(GreEevy)-r R+ 505 >
(2)
(ae 39 ae) ia(ae)+_& Bu)z
P 3% + u.sg + v E; = Pr 5; 98 3; gp 5;
p6 = const J
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The varistion of viscosity with temperature is approximated by
9 e
M= 1l = = PeV¥aC 5 . (3)

as is discussed in reference 3. The constant C dis obtained by match-
ing equation (3) with the Sutherland formula at some eppropriate point.
If the matching is done at the wall,

6y (6, + 216° R
C=Alg o) (4)
O \Oy + 216° R

The momentum equation can be made independent of the energy equation by
means of the transformation

J

YEff—d;y; X= x5 T
0

which is similar to that used in reference 4. Further simplification of
the basic equations will result from.the introduction of a stream func-
tion as in reference 1:

It
ct

(5)

P
SIS \
Y S (6
SR LR S L R B £ 28
0 S
and the definition

Application of equations (4) to (7) to equations (2) yields

WYT + \ify’lfn - q"x"lfﬂ = U'(T) + C\’mvm (8&)

o, ov,
Op + WOy - Yy = B Owy * e, - 6 (byy)° (8b)
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The appropriate boundary conditions on V¥ are
*Y(X;m;T) = WY(O:Y:T) = U(T) (92)
¥y (X,0,T) = ¥(X,0,T) = 0 (9p)

For the case of an isothermal surface as considered herein, the boundary
conditions on ® are

@(X,«»,T)F e(0,Y,T) = 0 (10a)
®(X,0,T) = 1 (10b)

It should be noted that initial conditions would have to be added to
these boundary conditions 1f the early stages of the motion are to be
described properly. However, in the present problem it i1s assumed
that sufficlent time has elapsed so that the initial conditions no
longer affect the flow.

Solutions

The solutions of the boundary-value problem (specified by egs. (8)
to (10)) describing the flow and heat transfer of an isothermal semi-
infinite flat plate traveling in a compressible viscous medium with a
speed that may vary with time in a differentiable but otherwise arbi-
trary manner will be obtained by a method similar to that of reference
1. That method is appropriately modified herein to include the effects
of heat transfer.

Parameters. - It is desirable to determine the.governing parameters
before attempting to obtain a solution. Reference 1 noted that the di-
mensionless parameters

xU' . X2U", . xou(m) (11)
U_Z)USJ"‘J Un+l"

can be formed fram the coordinate along the surface and the stream ve-
locity and its derivatives. The Reynolds and Mach numbers are, of
course, also pertinent. Physically, the quantities (11) represent the
ratio of the time required for a change of same physical quantity (e.g.,
velocity) at the boundary-layer edge to diffuse throughout the layer to
the time that is characteristic of a variation of the free stream at the
boundary-layer edge. Hence, the quantities (ll) are a measure of the
promptness with which the boundary layer responds to impressed changes.
If the quantities (ll) are very small, the flow can be considered to be
quasi steady; that is, the boundary layer at any instant is that appro-
priate to steady flow at the instantaneous value of the stream velocity.
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The significance of the parameters (11) can be made clearer, per-
haps, by consideration of a special case. For uniform acceleration,
for example, U = AT; and the quantities (11) reduce to a single parame-
ter ¢ = X/AT?, which is equivalent to the ratio of the distance aft of
the lesding edge to the distance traveled by the plate. For ¢ >> 1,
the effect of the leading edge has not yet been felt at the station X;
and reference 1 points out that the solution for this condition corre-
sponds to the initial motion. If £ << 1, the growth of the boundary
layer with X must be considered; and reference 1 shows that for this
case the flow is nearly quasi steady. Reburning to the earlier inter-
pretation of (11), it is clear that, if the velocity is increasing, the
boundery layer at a fixed point on the plate becomes progressively thin-
ner and, hence, responds more quickly to changes at its outer edges.
This trend tends to establish quasi-steady flow.

Simplification for nearly quasi-steady flows. - In accord with ref-
erence 1, if consideration is restricted to a stage of motion where the
flow is nearly quasi steadys, the stream function may be defined as

¥ = 4/Cv,UX f(o':goxgl:gz: .. l) (12)
4 U
where O = s A= and Cn are functions of X, T that characterize

the departure from the quasi-steady state. The explicit definitions of
the €, are determined in the course of the analysis. The dimension~

less temperature difference cannot be expressed in the usual manner (see
ref. 3) in terms of two functions, one of which solves the thermcameter
(i.e., insulated plate) problem and the other corrects for the heat
transfer, since the adisbatic wall temperature is a function of both X
and T herein. Therefore, let

6 = 1(0,8,) + Zroolery B(0tn) (1)

SThe motion in the early stages, that is, before the flow becomes
quasi steady, is treated for several configurations in reference 5. For
this case, the inertia terms and the x-dependence vanish.

3743
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Substitution of equations (12) and (13) into equations (8) yields

oo

X! X! Xg*
f + ff . =-8—F+2(2 55— +X E hil £, + 2 —— of
(ofefos ago 2 e ol an g 2 oo
n=0
- 2X £44 E Te box + 4 e E Tot (14)
n Y n
n=0 n=0 :

=0 ]

hcc+mu“m|:$'—ha+%zh§n glﬂ'"'%(fdzhgn an'hdeﬁn an)] (15)
D=0

sw+ma+%(fa.,)%m{%#’z'lm%ﬂ SIEN ;w%(euz o, bax = 50 Y T, cnxﬂ (16)
() =0

=0

Equations (15) and (16) are correct only if the quantity Cv, is con-
stant. For the case considered herein (constant 6,), equation (4)
shows that Cv_ is indeed constant. The boundary conditions (egs.
(9) and (10)), in terms of the definitioms (12) and (13), are

fo’(“’Jgn) = 2; fo’(ngn) = f(olgn) =0 (17)
h(=,t,) = 0;  h(0,¢ ) =1 (18)
s(=,6,) = 0;  s(0,¢,) =0 (19)

Since nearly quasi-steady flows are assumed here, no initial conditions
need be specified.

Equations (14) to (16) can be made self-consistent (i.e., functions
of ¢ and {¢,, only) by defining

(o = }Sg,; (= f{}%’;’, t, = X_S_ggl; C (20)

These definitions correspond to the quantities (11); and, since the ra-
tio of diffusion time to the characteristic free-stream veriation time




8 NACA TN 3569

and, hence, the {, given by (20) are assumed small relative to unity,
the functions f, h, and s may be expanded as follows:

f(c,gn)s F(o) + gofo(a) + glfl(cr) + ..t ggfoo(cr) N S {,Oglfo]_(o) + oo

(21)
n(0,t,)= B(0) +tahg(0) + tyhy (0) + - -« + 5000 0) + -« + Lotangy (0) + - -

(22)
s{0,t,)= 8(0) +Eos(0) #8187 (0) + ..« +85500(0) + - . + oL 501 (0) + -

(23)

A discussion of the magnitudes of the l;n is presented in reference 1.

It is there pointed out that in practical situations the requirement of
small §n is commonly met; and, furthermore, the §n generally form a
diminishing sequence, provided that U(T) is a differentiable function.
The limitations for small ¢, for various specific U(T) are also dis-

cussed in reference 1.
Substituting equations (21) to (23) into equations (14) to (19)

and collecting coefficients of the various powers and products of the
¢, ¥ield in part (up to order ¢;) )

F™ + FF" = 0 ' (24a)

£yt + FEy - 2F'E) + BF'E, = - 4(2 -~ F') + 20F" (24p)
£ + FE] - 4F'E] + 5F'f) = 4f) (24c)

F'(s) = 2; F:(O) = F(0) =0 (252)

f;l(m) = fr'l(o) = fn(o) =0 (2s1b)

B" + PrFE' = 0 (26a)

hg + PrFh} - 2PrF'h = PrH' (20 - 3fo) (26b)

3743



cyLE

wa

NACA TN 3569 9

hy + Prfh] - 4PrF'h; = Pr(4h0 - 5H'fl) (26¢)

H(w) = 0; H(0) = 1 (27a)

hp(=) = hp(0) =0 (27)

S" + PrFS' + %; (F)2 = 0 (28a.)

sg + PrFs) - 2PrF's = Pr(208' + 83 - F'fg - SS'fO) (28b)
8y + Pr¥s] - 4PrF's; = Pr(4so - Py - SS‘fl) (28c)
S(») = 8(0) =0 (29a)

sp(w) = s,(0) =0 (29v)

Equations (24a), (25a), (26a), (27a), (28a), and (29a) are the
equations appropriate for steady flow, where, of course, F is the
Blasius function, where H describes the temperature distribution
for an isothermal plate 1f the dissipation is neglected, and wvhere

S(g) = R(0) - R(0) H(0) - (30)

The R(c) is the solution for an insulated plate, and R(0) is the re-
covery factor. The functions F, H, and R are tabulated in numerous
papers; for example, F and H can be found in reference 6, and R is
given in reference l. Since the cited equations represent steady flow,
equations (21) to (23), accordingly, indicate that for small {_  the

laminar compressible boundary layer on an isothermal flat plate is
nearly quasi steady with respect to both the velocity and temperature
distributions. Hence, the first-order deviations from the quasi-steady
case will be determined by solving equations (24b), (24c), (26b), (26c),
(28b), and (28c) with their associated boundary conditions.

Solutions of momentum equations. - Since the momentum equation was
made independent of the energy equation by the transformation given by
equation (5), the solutions of equations (24) and (25) are not altered
by a change in the thermal boundary conditions. Therefore, the func-
tions F, fo, f1, and thelr derivatives for the case of an isothermal

pPlate considered herein are identical to those for an insulated plate




=
ag treated in reference 1. The functlion F and 1ts derivetives, as has been stated, are tabu- e
lated for Pr = 0.72 in reference 6, and the functions Iy, f31, and thelr derivetives were de-

termined for Pr = 0.72 by direct numerlcal integration in reference 1 and are presented
tharein.

Solutions of energy equations. - The sclution of equations (26a) end {27a) 1s lmown and
es has been stated, 1s tebuleted in reference 6. The function H is presented in teble I(as
and figure 2(a) of this report for completeness. The function 8, presented in table I(b) and
Figure Z(b), 18 determined from equation (30) using the krown H and R, the latter being teb-
ulated for Pr = 0.72 in reference 1. The remalning energy equations and theilr assoclated
boundary conditions (egs. (26b), (26c), and (27b), and (zags, ?ésc), and (29b)) are solved for
Pr = 0.72 by the numerical integration method described in detall in appendix C of reference 1.
An outline of the method 1s presented herein in appendix B. The functlons hp and hy are

presented for Pr = 0.72 in table I(a) and figure 2(a), and sy and 87 for Pr = 0.72 are
given in table I(b) end figure 2(b). :

UNSTEADY BOUNDARY-LAYFR CHARACTERISTICS

Velocity and Temperature Profiles

The veloclty and temperaturs dlstributions can be obtained from

o
..3«/? l_c:-i-e";B“ fﬂdo+%&b&_ ﬁsda+§few\;-a"lfhodn+r;—l}li (‘ an&)-i-;l@ra" {? d.c-:-I."_]-lé [9 d-h-l-- ]

! L B % % u\ 0 0 U/ \& Yo o ’ % */ J

699¢ Nii VOVN
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The functions F and £ are independent of the Mach mmber.

Hence, the velocity profile is thickened (or thinned) because of cam-
pressibility. The specific effect can be determined from the preceding
relation between y and o and depends on the temperature ratio and
the Mach number. The unsteady effects are assoclated with the terms
containing the (... The functions H, hy, hy, S, 55, and s associ-

ated with the temperature profile are presented in figure 2.

Skin Friction
The local skin-friction coefficient mgy be written as

T

w Cvm . i )
CrE T o U7 =3 ‘\Iﬁ‘[l" (0) + tofR(0) + Ly£i(0) + . . ]

—

2

-

M

where Ty = [p(au/ay)]w- is the wall shear stress. Substituting the
values of F"'(0), £5(0), and f§(0) for Pr = 0.72 given in references
1l and 6 ylelds

Cv,
Cp = O.664J.q/iﬁf-EL +2.555 £y - 1.414 £ + . . ‘] (31)

Equation (31) has the same form as its counterpart for an insulated sur-
face ag given in reference 1, but the skin friction does differ for the
case of heat transfer. The effect of heat transfer is accounted for by
the constant C (see eq. (3)). From equation (4) it can be seen that ¢
will be altered, because 6y is the isothermal value specified herein

rather than the adiabatic value used in reference 1.

The leading term on the right of equation (31) is the quasi-steady
value of the coefficient. As would be expected, positive acceleration
leads to larger values of skin friction than the quasi-steady value.

Displacement Thickness

The displacement thickness 8% is defined as

o= 6-gi)e

0




or, by use of equations (2), (5), (6), and (12),

XCv

»* @ a8

= N—F (% B f;) da
0

Introducing equations (7) and (13) gives
{xc 2(6,; ~ 64
= 4 Yoo /ﬁ [ ( ) h+ (r - 1L)M8s - fc] do

or, using equations (21) to (23),

L ﬁ;ﬂ{,}g (22-F)+ (v-2)43 | 8 dHE(jg;;U[E ﬂ-+¢o{-fo(m)+(7-l)ﬂﬁfw+ﬂﬁ;#fhodv+. . ] +c1[-:1(m)+('r-1)!&[.-1d.u+—!r2(a -u‘éﬁnldu-i-. . ]}

Using the fect (ref. 1) thet 1im (¥ - 20} = - 1.72L and the information given in table I,
) G-wo

=T s & r s e r s o 1
8% = 1.9 ‘\j—"‘?":- 1.1+ 0.1873(y - 1)MS + 1.1285 U—‘g - 0.6919 L)1+ 0.4389(y - 1)4E - 0.08288 ."!9;31'.] + 08044 £ |-1+0.REHO(1 -~ 12 + o,5288 ngi"-l+ . J (22)

The first three terms on the right correspord to the campressible quesl-steady result, as can be
verified for a given Mach number end temperature in reference 6. The effects of heat transfer
not only affect the quasi-steady results through ¢ and (8, - 8,)/6,, but also are of impor-
tance in the deviatlions from the quasi steady. For example, 1f 8y < 64, a positive acceler-

ation will lead to a thinner boundary layer than the quasi steady, as was the case also for an
insulated surface. However, 1f 6. > 6, the boundary layer will depend on the magnitude of the

Mach number as well as the temperature difference.

3743
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Using the definition of the Prandtl mmber and equations (2), (3), (5), (7), and (13) in the
above expression ylelds

r ]

% 1 pC U2
q_u:-ZPr (QW-—G“) T lit:l(:,.-!-z R BUJ
eplOy = 6m) 7|

or, using eguations (22) and (23),

g - 2;_1 (6, -8.) .fUuu.xp.c {1'(0) "‘E’({Tﬂf g'(0) + ;O[hé(o) + 7, e:a_ o 83(0) + . . ] + ;l[hi(o) +'ﬁ@3_a:7:f si(oJ .. ]}

Substituting the numerical veliues Irom teble I yields for FPr = Q.72

= 0.4106 cp(av- ) «/EH%D-{{L- 0.4240(7 - 1)M8 E;:T_' 0.06925 §0[1+ 0.2746{ - L)M2 3;;3:}- 0.4232 cl[l- 0.-5604(r - 1M %]-f- - }

(35)
The compressible quasi-steady heat-transfer rate is glven by the first two terms on Tae
right side of equation (33), as can be seen by camparing with equation (21) of reference 8.

The deviations fram the quasi-stesdy results depend again on the magnitudes of the temper-
ature difference and Mach pumber. For example, for positive acceleration the heat-transfer rate
from the plate is decreased 1f &y > 6, but 1f 6y < 6, 1t might either be increased or
decreased,

696 KL VOVN
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Plate Oscillating About a Steady Velocity

As an example of the foregoing analysis, suppose that the plate os-
cillates about a steady velocity as

U= uo(l + ¢ sin ot) (34)

where the amplitude of the velocity fluctuations € is to be small rel-
ative to unity. Substituting equation (34) into equations (31) and (33)
yields to order €

cp = cfo[l + &Cysin(wt + cpl)] (35)

g= qo[l + £C,sin(wt - wz)] (s6)

where cfo and qy are the steady (corresponding to flight velocity

uo) local skin-~-friction coefficient and hest-transfer rate, respec-
tively, and where '

oy = 1.5 v sasof) + o (2] =)
o vt B o) 8
for p# o,
R e e )]
(392)

0.1385(1 + 0.27463)()%) 4 +—6[(§06)2] (402)

?, = -1
2 = tan 1 - 2.120B

_ X )
Co = 0.09775 uo{l +or[(uO) :l} (39b)

1

and., for B = m,

3743
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¢, = tan™10.2496 —;%{1 + @‘[(%)ZJ (40b)

(v - 1)mZ6,
B=—."9.

- -]

where

(41)

The quadrants of the angles ¢, and @, can be determined from the

regpective signs of the numerator and denominator of the defining
equations.

Tt is significant to note from equations (34) to (36) that the max-
ims of skin friction and heat transfer are not in phase with the maxima
of the plate velocity; and, furthermore, the amplitude of the fluchua-
tions of these quantities depends on the frequency, as was also found in
reference 2.

Note that equations (35) and (36) give the deviations fram the
steady (or mean) conditions rather than from the quasi steady as was
the case in the discussion of the general analysis. The functions Cl

and Cp (which define the maximm deviations from the steady) and the
phase angles ¢; and @, are presented in figure 3. It can be seen
from the definition of @ and figure 5(&) that for permissible values

of %% the maxima in skin friction will always lead the plate velocity

by angles not exceeding asbout 45°. The phase relations between the
heat-transfer rate and the plate velocity depend essentially on the Mach
number, ratio of plate to stream temperature, and frequency. For Mach
numbers near zero, ®, becames small, and the maxima of heat transfer

and plate velocity are nearly in phase in accord with the discussion in
reference 2.

From figure 3 it can be seen that the unsteady effects can be sig-

nificant. It should be noted from equations (36) and (39) that Cp be-

comes infinite when the steady heat transfer approaches zero. The ac-
tual heat-transfer rate given by equation (36) is, however, finite. The

function Cp remains almost constant with %% (see fig. 3(b)), so that

the maximum amplitude of the heat-transfer fluctuations is essentially
the quasi-steady value.
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CONCLUDING REMARKS

The laminar compressible boundary-layer flow and heat transfer over
an isothermal semi-infinite flat plate moving with a time-dependent ve-
locity has been analyzed. The first-order deviations of the velocity
and temperature profiles, skin-friction coefficient, displacement thick-
ness, and local heat-transfer rate fram the quasi steady have been com-
puted; the associated universal functions are presented in tabular form
for Pr = 0.72. Relative to quasi-steady flow, positive acceleration
results in larger skin friction, thinner boundary layers if the wall
temperature is larger than the free-stream temperature, and either
thicker or thinner boundary layers (depending on the Mach number) if the
surface is at a lower temperature than the stream. Positive accelera-
tion results in lower heat-transfer rates from the plate if the surface
temperature is greater than the free stream, whereas with lower surface
temperatures the heat-transfer rate would be increased or decreased de-
prending on the magnitudes of the temperature difference and the Mach
number. Hence, the boundary-layer characteristics for an isothermal
surface can be considerably different from those for an insulated
surface.

Consideration of the particular case of a plate oscillating about
a steady velocity showed that the boundary-layer characteristics can be
appreciably altered by the unsteady effects. Furthermore, the skin
friction and local heat-transfer rates were found to be out of phase
with the plate velocity for permissible values of the frequency param-
eter. The maxima of skin friction lead the plate velocity by amounts
not greater than about 45°. For steady Mach numbers near zero, the heat
transfer is almost in phase with the plate velocity. At higher speeds
the heat-transfer phase angle depends significantly on the steady Mach
number and ratio of wall to free-stream temperature in addition to the

frequency.

ILewis Flight Propulsion Laboratory
National Advisory Cammittee for Aeronautics
Cleveland, Ohio, August 10, 1955
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Cl,CZ

Cr

£,5;

o

By

w = R

W0

APPENDIX A

SYMBOLS
acceleration
constant defined by eq. (4)
constants defined by egs. (37) and (39), respectively
local skin~friction coefficient
specific heat at constant pressure
related to stream.function for flat plate in steady flow

functions related to stream fUnction for unsteady flat-plate
flow, i =0, 1, 2, .

temperature function related to steady flat-plate flow

functions related to temperature for unsteady flat-plate flow,
i=0)l’2’o

thermal conductivity coefficient.
Mach number

Prandtl number

local heat-transfer rate

function related to temperature profile for insulated flat plate
in steady flow

function related to temperature for steady flat-plate flow

functions related to temperature for umsteady flat-plate flow,
i = O’ l, 2) . -

time
stream velocity in x-direction
velocity in X- and x-directions, respectively

velocity in Y- and y-directions, respectively
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X,x,X coordinate along surface

Y:Y}§' coordinate normal to surface

B constant defined by eq. (41)
T ratio of specific heats
% displacement thickness
€ amplitude of velocity fluctuations
tn dimensionless parameter, n=0, 1, 2, . . . (eq. (20))
® dimensionless temperature difference
6 temperature ‘
i absolute viscosity coefficient
Vo kinematic viscosity coefficient outside boundary layer
o} density
g dimensionless coordinate, I
2 'yCu X

-3

®,,9; phase angles defined by eqs. (38) and (40), respectively

¥ stream function

o frequency of velocity fluctuations
Subscripts:

W evaluation at wall (y = 0)

0 evaluation at a steady condition
@ evaluation in stream (y -+ =)

Subscript notation for partial differentiation is used when con-
venient. Primes denote ordinary differentiation.
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APPENDIX B

INTEGRATTON METHOD

The second-order differential equations for the temperature func-
tions (egs. (26b), (26c), (28b), and (28c)) and their associated bound-
ary conditions (eqs. (27a), (27b), (29a), and (29b)) constitute a two-
point boundary-value problem. The difficulty presented by the fact that
the boundary conditions are given at two points (o = 0,») is overcome by
splitting the original two-point problem into two single-point problems.
To this end, each function hg, hy, 85, and sy is written as the sum

of two functions; for example, for hj, as

v (o) ]
]y B0 (100 4 (2o
"o fihol (o) B () + 57 (e)

vhere the h(l)(a) and h(z)(c) are solutions of single-point problems.

The h( ) satisfies the homogeneous equation with the specified initial
condition plus an arbitrary initial condition (hgl))’(o) = 1 replacing

the boundary condition at infinity, and the héz)(c) satisfies the non-

homogeneous equation and homogeneous initial conditions on the function
and its first derivative.

The scale of the variable ¢ is then divided into equal intervals.
Starting from the initial values of each part of each function - for ex-

ample, hél)(c) and héz)(c) - the values at successive points near

0 = 0 can be obtained by expanding the unknown function in & Maclaurin
series. Thus; the function and its derivetives are known at a succes-
sive number of points near o = 0. A polynamial (for the highest deriv-
ative) can then be matched to the known values and to the unknown value
at the next point. The degree of the polynomial and size of the inter-
val depend on the accuracy required. In this regard, it can be stated
that the solutions of the energy edquations are more easily obtained than
those of the momentum equetions, since a second-degree polynomial is
matched at three successive points for the temperature functions, where-
as a fifth-degree polynomial was matched at six points in the solution
of the momentum equations (see ref. l). This simplification is consid~
ered warranted, because the energy equations are of lower order than the
momentum equations. However, because the curvatures of the sy and sy
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functions were relatively greater than the hy and hy functions (see
fig. 2), it was decided to check the accuracy of the three-point method
described herein. Accordingly, sg and its derivatives were obtained by

five-point integration formulas, and those results for sy differed by

at most one in the fourth decimal place and by two in the fourth place
for 56 from those presented herein.

The polyncmial is then integrated to yield the successively lower-
order derivatives at the unknown point in terms of the known and unknown
values of the highest derivative. The condition that the function and
all its derivatives must satisfy the differential equation at the un-
known point serves to determine the highest-order derivative and, hence,
the function at that point. Thus, given the function at a successive
number of points, the solution can be extended to the next point. This
procedure is then continued over the entire range of o.
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TABLE I. - FUNCTIONS ASSOCIATED WITH TEMPERATURE FROFILE

(a) Functions h.

o H m By B By By
o} 1.0 -0.5912 0.00000 | 0.04093 0.00000 | 0.25019
1 .9409 -.5911 .00397 .03737 .02503 .25039
.2 _.8818 -.5905 .00732 .02915 .05004 .24939
.3 .8228 -.5887 .00976 ~01934 .07430 .24500
.4 L7641 -.5853 .01122 .01014 .09887 .23539
.5 .7058 -.5796 .01186 .00300 .12167 .21932
.6 .6483 -.5713 .01192 | -.00135 .14251 .19631
.7 .5917 -.5599 .01170 | -.00275 .16070 .16659
.8 .5364 -.5452 .01146 | -.00152 .17562 .13108
.9 .4827 -.5269 .01145 .00169 .18677 09127
1.0 L4311 ~.5050 .01183 .00603 .19379 .04908
1.1 .3819 -.4797 .01266 .01057 .19657 .00660
1.2 .3353 -.4512 .01391 .01448 .19518 | -.03405
1.3 .2917 -.4199 .01551 .01708 .18989 | -.07092
1.4 .2513 -.3865 .01727 .| .01796 .18118 | -.10244
1.5 .2144 -.3516 .01904 .01697 .16963 | -.12749
1.6 .1811 -.3161 .02061 .01423 .15591 | -.14548
1.7 .1512 -.2805 .02184 .01002 .14076 | -.15633
1.8 .1249 -.2458 .02258 .00479 .12487 | -.16042
1.9 .1020 -.2125 .02278 | -.00082 .10887 | -.15850
2.0 .0824 -.1812 .02242 | -.00631 .09333 | -.15159
2.1 L0657 ~.1524 .02153 | -.01122 .07868 | -.14086
2.2 .0518 -.1264 .02020 | -.01524 .06523 | -.12749
2.3 .0403 -.1034 -01851 | -.01816 .05321 | -.11264
2.4 .0310 -.0834 .01660 | -.01992 .04272 | -.09730
2.5 .0236 -.0683 .01457 | ~.02057 .03374 | -.08227
2.6 .0176 -.0520 .01252 | ~.02025 .02623 | -.06817
2.7 L0131 -.0401 .01055 | -.01919 .02006 | -.05538
2.8 .0095 -.0306 .00870 1~ 01760 .01510 | -.04415
2.9 .0069 -.0230 .00703 | -.01564 .01117 | -.03461
3.0 .0049 -.0170 .00557 | -.01351 .00812 | ~.02665
3.1 .0035 ~.0124 .00432 | -.01136 .00579 { -.02019
3.2 .0024 -.0089 .00329 | -.00933 .00404 | -.01507
3.3 .0016 -.0063 .00246 | -.00748 .00274 | -.01107
3.4 .0011 -.0044 .001798 | -.00588 .00180 | -.00805
3.5 .0007 -.0030 .00127 | ~.00452 .00110 | -.00581
3.6 .0005 ~.0021 .00087 | -.00342 .00061 | -.00418
3.7 .0003 -.0013 .00057 | -.00254 .00026 | ~-.00303
3.8 .0002 -.0009 .00036 | ~.00184 .00000 | -.00221
3.9 .0001 -.0006 .00020 | -.00134 -.00019 | -.00168
4.0 .000L -.0004 .00008 | -.00096 -.00035 | ~.00136
4.1 .0000 ~-.0002 .00001 | -.00068 -.00048 | -.00116

f H do = 0.9692 f hy dg = 0.04425 f by do = 0.3158
0 (o] 0
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TABLE I. - Concluded. FUNCTIONS ASSOCIATED WITH TEMPERATURE PROFILE

(b) Functions s.

1 1 t
g S S 50 BO sl sl
o] 0.00000 | 0.50134 0.00000 | 0.02248 0.00000 [-0.27540
1 .04694 43775 -.01217 ~-.24852 -.01863 -.09863
.2 .08754 37395 ~-.04648 -.42273 -.02027 .06196
3 .12176 .30988 -.09399 -.51508 -.00719 19431
.4 .14953 .24593 -.14724 -.53969 01741 .29163
.5 .17099 .18287 -.20013 -.51025 .04987 35127
.6 .18614 12174 -.24794 -.44003 .08643 .37400
.7 .19540 .06368 -.28721 -.34181 .12356 .36311L
.8 .19905 .01006 -.31577 -.22761 .15812 .32417
.9 .19766 | -.03789 -.33257 -.10845 .18770 .26433
1.0 19174 | -.07898 -.33761 .00616 .21053 .19060
1.1 .18205 | -.11227 -.33176 .10850 .22561 .11051
1.2 .16953 | -.13732 -.31651 .19305 .23264 .03094
1.3 .15491 | --15411 -.29384 .25662 .23200 -.04225
1.4 13905 | -.16293 -.26591 .29822 .22455 ~-.10467
1.5 12261 | -.16462 -.23490 .31885 .21152 -,15350
1.6 .10625 | -.16019 -.20276 .32099 19434 -.18760
1.7 .09070 | -.15159 -.17119 .30819 17447 -.20734
i.8 .07615 | -.13899 -.14149 .28445 .15329 -.21424
1.9 .06297 | -.12436 -.11454 .2537S .13199 -.21036
2.0 .05125 | -.10883 ~-.09085 .21959 .11150 -.19835
2.1 .04119 | -.09328 -.07065 .18486 .09250 -.18082
2.2 .03259 | -.07843 -.05384 .15171 .07544 -.16012
2.3 .02548 | -.06475 -.04021 .12155 .06051 -.13820
2.4 .01961 | -.05254 -.02941 .09517 04777 ~.11657
2.5 .01485 [ -.04196 -.02104 .07283 03714 -.09628
2.6 .01121 | -.03295 -.01471 .05449 02844 -.07797
2.7 .00822 | -.02558 -.01003 .03985 .02146 -.06202
2.8 .00605 | -.01945 -.00665 .02842 .01597 -.04848
2.9 00431 | -.01460 ~-.00427 .01979 .01169 -.03723
3.0 .00305 | -.01082 -.00263 .01339 .00844 -.02814
3.1 .00207 ; -.00790 -.00152 .00878 .00601 -.02093
3.2 .00143 | -.00570 -.00082 .00555 .00421 | -.01533
3.3 .00098 | -.00405 -.00039 .00336 .00289 -.01107
3.4 .00063 | -.00283 -.00014 .00193 .00196 -.00787
3.5 .00042 | -.00198 .00002 .00101 .00130 -+00551
3.6 .00021 | -.00129 .00008 .00046 .00085 -.00381
3.7 .00013 | -.00096 .00011 .00013 00053 -.00259
3.8 .00004 | -.00060 .00012 ~-.00004 .0003L | -.00176
3.9 .00002 | -.00037 .00010 -.00012 .00017 -.00117
4.0 .00005 | -.00023 .00009 -.00015 .00008 | ~-.00077
4.1 | O -.00019 .00008 -.00015 | -00002 ~.00051
L/1 8 do = 0.2879 ’ g8g do = -0,4440 \I:n 8y do = 0.3095
0 o]

cyle
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<]

Position of plate
at time -t = O

w1

U(t)
——————
I

\/wU dt —————

(a) Coordinates fixed in fluid at rest.

(b) Coordinates fixed in plate.

Figure 1. - Coordinate systems used in analysis.
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Figure 3. - Amplitudes and phase angles as functions of fre-

quency parameter for plate oscillating about a steady
velocity.
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